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Definition.
The line x = a is a vertical asymptote of a function y = f (x) iff

lim
x→a+

f x = ±∞ or lim
x→a−

f x = ±∞

Definition.
The line y = ax+b is an oblique asymptote of the (graph of a) 
function y = f (x) iff 

lim
x→+∞

f x − 𝑎𝑥 + 𝑏 = 0 or lim
x→−∞

f x − 𝑎𝑥 + 𝑏 = 0.

When a = 0 the oblique asymptote is called the horizontal 
asymptote.

Essentially, we should say asymptote of the graph of a function
because it is a geometrical object.



Example.

Lines x=0 and y=x are 

vertical and oblique 

asymptotes, respectively, for 

f(x) = 
1

𝑥
+ 𝑥, 

Lines x=0 and y=2x are vertical and 

oblique asymptotes for f(x) = 
1

𝑥
+ 2𝑥, resp.



FAQ. How the hell do I find an asymptote for f(x)?

To find vertical asymptotes just look for points around which the 
values of your function are unbounded (division by zero, 
logarithm close to zero and the like). To find an oblique 
asymptote look at the definition: the line y = ax+b is the oblique 
asymptote for f(x) if and only if

lim
x→+∞

f x − 𝑎𝑥 + 𝑏 = 0. Dividing both sides by x we get

0 = lim
x→+∞

f x − 𝑎𝑥+𝑏

x
= lim

x→+∞

f x

x
− lim

x→+∞

ax

x
− lim

x→+∞

b

x
= lim

x→+∞

f x

x
− 𝑎 , 

hence, lim
x→+∞

f x

x
= 𝑎. Once we have a, we check if there exists 

the limit lim
x→+∞

f x − 𝑎𝑥 . If it does then b = lim
x→+∞

f x − 𝑎𝑥 . If it

does not – there is no asymptote at +∞.



Theorem.

A function f(x) has an asymptote at +∞ iff there exist limits

lim
x→+∞

f x

x
= a and lim

x→+∞
f x − 𝑎𝑥 = b . Then the line y = ax+b

is the asymptote.

Notice that the existence of lim
x→+∞

f x

x
is not enough. For example

consider f(x) = 𝑥 . lim
𝑥→+∞

𝑥

𝑥
= 0 =a and lim

x→+∞
( 𝑥 −0𝑥) does not 

exist. 

A similar theorem is valid for an oblique asymptote at −∞.



Switching to the old presentation for the 

definition and properties of 

CONTINUOUS  FUNCTIONS.

-Please, remind me to switch back here before we begin derivatives.

-But how will we know you are going to begin derivatives?

-Don't ask stupid question!

-There are no stupid questions, but there are many stupid requests …

-Aw, just shut up and do what you are told. Or else …



Remark.

It is wrong to think that continuous functions are those whose 
graphs look continuous. The graph of a continuous function should 
look like an unbroken curve only if considered on an interval 
contained in its domain. For example, the signum function (1 if 
x>0, -1 if x<0) is continuous in its domain (reals without 0) even 
though its graph has a discontinuity. For the same reason tan is 
considered continuous. Even outrageously discontinuous functions, 
like the Dirichlet function, are continuous if you restrict them to a 
subset of ℝ, for example, it is continuous on ℚ (well, it is constant 
there).



Definition.
For every set A, A ⊆ ℝ, the least upper bound of A is the number 
sup(A) defined as the smallest number t such that every element 
of A is less than or equal to t.

Definition. (A twin to the sup definition)
For every set A, A ⊆ ℝ, the greatest lower bound of A is the 
number inf(A) defined as the largest number t such that every 
element of A is greater than or equal to t.

Theorem.
Every subset A of ℝ bounded from above has the least upper 
bound (not necessarily belonging to A). 

Similar theorem holds for sets bounded from below. 



Theorem.
If f is continuous on a closed interval [a;b] then it takes on its 
largest and its smallest values on the interval. Meaning there 
exists xmax[a;b] such f(xmax) is the largest value of f on [a;b].

Outline of proof. 
Obviously the set f([a;b]) is bounded, so it has the least upper 
bound, say ymax . The problem is to prove that there exists xmax in 
[a;b] such that f(xmax) = ymax . This is beyond the scope of this 
course.

The theorem may be rephrased as:

If f is continuous on a closed interval [a;b] then f([a;b]) is also a 
closed interval.



An illustration of the principle.

f(x) = 
1

𝑥
is continuous on (0;1) but not on [0;1]. The set of values 

is unbounded from above so f(x) does not take its largest value. 
On the other end, it is bounded from below by 1 and the set of 
lower bounds has the largest element, namely 1. But 1 is not the 
value for this function for any point in the open interval (0;1). It 
is, of course, the value of f(x) for x=1 which does not belong to 
(0;1) but does to [0;1].

Comprehension.
What is tan([0;])?

Switching to old presentation here for definition and properties of 
the derivative. 

Back after we list properties of differentiable functions.



Proof (continuity of differentiable functions)

If a function y = f (x) is differentiable at 𝑥0 then it is continuous

at x0.

Since lim
h→0

f x
0
+h −f x

0

h
= f '(x0) and lim

h→0
h = 0, we have 

lim
h→0

(f(x0+h) – f(x0)) = 

= lim
h→0

f x
0
+h −f x

0

h
h = lim

h→0

f x
0
+h −f x

0

h
lim
h→0

h = 

= f '(x0)∙0 = 0 

which means 

lim
h→0

f(x0+h) = f(x0)  i.e., lim
x→x

0

f(x) = f(x0).



Proof (of the product rule)

𝑓 𝑥 𝑔 𝑥 ′ = 𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 𝑔′(𝑥).

𝑓 𝑥 𝑔 𝑥 ′ is the limit of the difference quotient

lim
h→0

f x+h g x+h −f x g x

h
=

lim
h→0

f x+h g x+h −f x+h g x +f x+h g x −f x g x

h
= 

lim
h→0

f x+h (g x+h −g x )+(f x+h −f x )g x

h
= 

lim
h→0

(
f x+h (g x+h −g x )

h
+

(f x+h −f x )g x

h
) =

lim
h→0

(f x + h
(g x+h −g x )

h
+

(f x+h −f x )

h
g x ) =

lim
h→0

f x + h lim
h→0

(g x+h −g x )

h
+ lim

h→0

(f x+h −f x )

h
lim
h→0

g x = 

f(x)g'(x)+f '(x)g(x)



Proof. (Derivative of the inverse function)

𝑓−1 ′ 𝑦 =
1

𝑓′ 𝑥
where y = f(x).

First look at this 𝑓−1 𝑓 𝑥 = 𝑥. Differentiating both sides we get

𝑓−1 𝑓 𝑥
′
= 1 hence, by the chain rule

𝑓−1 ′ 𝑓 𝑥 𝑓′ 𝑥 =1 , hence 

𝑓−1 ′ 𝑓 𝑥 = 
1

𝑓′ 𝑥

or, if you denote f(x) by y, 

𝑓−1 ′ 𝑦 =
1

𝑓′ 𝑥



Derivative of the inverse function in action.

Let's calculate arcsin 𝑥 ′ , x  [-1;1]

arc sin 𝑥 ′ = 
1

sin t ′ =
1

cos t
, provided sin t = x and t ∈ −

π

2
;
π

2
. 

Since 𝑐𝑜𝑠2 𝑡 + 𝑠𝑖𝑛2 𝑡 = 1 we have cos t = 1 − 𝑠𝑖𝑛2 𝑡 .  

Since cos t > 0 on −
π

2
;
π

2
, we can write cos t = 1 − 𝑠𝑖𝑛2 𝑡 = 1 − 𝑥2.

Finally

arc sin 𝑥 ′ =
1

cos t
=

1

1−𝑥2


